Week 7, Day 5
 Equations with two unknowns

Each day covers one maths topic. It should take you about 1 hour or just a little more.

1. Start by reading through the Learning Reminders. They come from our PowerPoint slides.

2. Tackle the questions on the Practice Sheet. There might be a choice of either Mild (easier) or Hot (harder)!
Check the answers.

3. Finding it tricky? That's OK... have a go with a grown-up at A Bit Stuck?

4. Have I mastered the topic? A few questions to Check your understanding. Fold the page to hide the answers!

How many times must Dan multiply 0.048 by 10 to get 48,000?
\qquad
What number is one hundred times smaller than 0.4 ?

Learning Reminders

Find pairs of numbers that satisfy an equation with two unknowns, enumerate possibilities of combinations of two variables.

$$
a+b=10
$$

\mathbf{a} and \mathbf{b} are two new mystery whole positive numbers

What might numbers a and b might represent?

\mathbf{a}	\mathbf{b}
10	0
9	1
8	2
7	3
6	4
5	5
4	6
3	7
2	8
1	9
0	10

Learning Reminders

Find pairs of numbers that satisfy an equation with two unknowns, enumerate possibilities of combinations of two variables.

$$
c \times d=24
$$

Think what whole numbers c and d might represent.

List ALL the pairs of possibilities on your whiteboard.

c	d
1	24
2	12
3	8
4	6
6	4
8	3
12	2
24	

Learning Reminders

Find pairs of numbers that satisfy an equation with two unknowns, enumerate possibilities of combinations of two variables.

$$
2 e+f=8
$$

Find a pair of whole numbers which will work.

Test out your ideas by substituting for the letters, e.g. if you think 3 and 2 will work, work out $2 \times 3+2=8$.
So, e could equal 3 and f equal 2 . Could e equal 2 and f equal 3 ? Try it!

Double a number, plus another number makes 8 ... If e is 1 , then f must be...

If e is 2 , then...
Some interesting patterns in this table.

Practice Sheet Mild
 Equations with two unknowns

Write the possible pairs of answers for these equations. All answers are whole numbers.

$$
\begin{aligned}
& a+b=9 \\
& c \times d=15 \\
& 10-e=f \\
& g+h+1=11 \\
& j \times k-1=15 \\
& m+n-2=8 \\
& p \times q=20 \\
& 14-r=s \\
& 2 t+u=10
\end{aligned}
$$

Challenge

Can you make up a puzzle like this for your partner to solve?

Practice Sheet Hot Equations with two unknowns

Find a pair of numbers that works in both equations:

$$
\begin{array}{ll}
a+b=10 & a \times b=21 \\
c \times d=16 & c-d=6 \\
e+f=12 & e-f=4 \\
g-h=9 & g \div h=4 \\
j \times k=72 & j \div k=2
\end{array}
$$

Challenge

Can you make up a puzzle like this for your partner to solve?

Practice Sheets Answers

Equations with two unknowns (mild)

```
a+b=9
a=0 b = 9, a= 1 b = 8,a = 2 b = 7,a = 3 b = 6,a = 4 b = 5,a=5 b = 4,a = 6 b = 3,
a=7b=2,a=8b=1,a=9b=0
cxd=15
c=1d=15,c=3d=5,c=5d=3,c=15d=1.
10-e=f
e=0f=10,e=1f=9,e=2f=8,e= 3f=7,e=4f=6,e= 5f=5,e=6 f=4,
e=7f=3,e=8f=2,e=9f=1,e=10f=0
g + h + 1 = 11
g=0h=10,g=1 h= 9,g=2h=8,g=3h=7,g=4h=6,g=5h=5,g=6h=4,
g= 7h=3,g=8h=2,g=9h=1,g=10h=0
jxk-1=15
j=1k=16,j=2k=8,j=4k=4, j= 8k=2, j= 16 k=1
m+n-2=8
m=0n=10,m=1n=9,m=2n=8,m=3n= 7, m=4n=6,m=5n=5,
m=6n=4,m=7n=3,m=8n=2,m=9n=1,m=10n=0
p x q= 20
p=1q=20,p=20q=1,p=2q=10,p=10q=2,p=4q=5,p=5q=4
14-r=s
r=0s=14,r=1s=13,r=2s=12,r=3s=11,r=4s=10,r=5s=9,r=6s=8,
r=7 s=7,r=8s=6,r=9s=5,r=10s=4,r=11s=3,r=12s=2,r=13s=1,
r=14 s=0
2t+u=10
t=4u=2,t=3u=4,t=2u=6,t=1u=8
```


Equations with two unknowns (hot)

$\mathrm{a}=7 \mathrm{~b}=3$ or $\mathrm{a}=3 \mathrm{~b}=7$
$c=8 \mathrm{~d}=2$
$\mathrm{e}=8 \mathrm{f}=4$
$\mathrm{g}=12 \mathrm{~h}=3$
$\mathrm{j}=12 \mathrm{k}=6$

A Bit Stuck? Mystery pairs

1. Two numbers have been multiplied together to make 12: $\square \mathrm{x} \square=12$

We can use letters to represent each number instead of empty boxes:
$a \times b=12$
There are lots of possible pairs of whole numbers!
This person has started working through some answers. See if you can finish their work.
ค
2. Two numbers have been added together to make 9: \square
\square $=9$

We can use letters to represent each number instead of empty boxes:
$c+d=9$
There are lots of possible pairs of whole numbers!
Your challenge is to find them ALL!
3. Two numbers have been multiplied together to make 18: \square $=18$

We can use letters to represent each number instead of empty boxes:
exf=18
There are lots of possible pairs of whole numbers!
Your challenge is to find them ALL!

Check your understanding Questions

Both a and b are whole numbers.
How many possibilities are there for values of a and b
if $a+2 b=13$.
$2 a$ is 5 more than $3 b$.
If a and b are both whole numbers and $a<10$, what are the possible values for a and b ?

A number less than 10 is multiplied by itself. The answer is equal to a different number multiplied by 9 . What are the possible numbers?

Check your understanding
 Answers

Both a and b are whole numbers.
How many possibilities are there for values of a and b
if $a+2 b=13$. There are 7 solutions.
Since 2 x any number is an even number, a must be odd. Some children may miss the solution where b is 0 .
The solutions are:
$\mathrm{a}=1$ and $\mathrm{b}=6$
$\mathrm{a}=3$ and $\mathrm{b}=5$
$\mathrm{a}=5$ and $\mathrm{b}=4$
$\mathrm{a}=7$ and $\mathrm{b}=3$
$\mathrm{a}=9$ and $\mathrm{b}=2$
$\mathrm{a}=11$ and $\mathrm{b}=1$
$a=13$ and $b=0$
$2 a$ is 5 more than $3 b$.
If a and b are both whole numbers and $a<10$, what are the possible values for a and b ?
Either $a=7$ and $b=3$, or $a=4$ and $b=1$.

A number less than 10 is multiplied by itself. The answer is equal to a different number multiplied by 9 .
What are the possible numbers?
Either $3^{2}(=1 \times 9)$ or $6^{2}(=4 \times 9)$.

