Compare fractions with different denominators using equivalence.

Which fractions with denominators less than 15 can be written as $^{1}/_{15}$ s?

$$^{1}/_{3} = ^{5}/_{15}$$

$$\frac{1}{5} = \frac{3}{15}$$

$$\frac{5}{15} > \frac{3}{15}$$

So, $\frac{1}{3} > \frac{1}{5}$

Compare fractions with different denominators using equivalence.

But what if we don't have a fraction wall to help us compare fractions visually?

2/3 3/5

We can write these as the same 'sort' of fractions, i.e. fractions with a common denominator, in this case $\frac{1}{15}$ s, to compare them.

Have a go at writing both

2/3 and 3/5 as 1/15s,

then write > or < to compare
them

$$\frac{10}{15} > \frac{9}{15}$$

So, $\frac{2}{3} > \frac{3}{5}$

 $\frac{2}{3} = \frac{10}{15}$ (multiply both numerator and denominator by 5)

 $\frac{3}{5} = \frac{9}{15}$ (multiply both numerator *and* denominator by 3)

Compare fractions with different denominators using equivalence.

List which fractions with denominators less than 20 can be written as $^{1}/_{20}$ s.

$$^{1}/_{2}s$$
 $^{1}/_{4}s$ $^{1}/_{5}s$ $^{1}/_{10}s$

Now use equivalence with $^{1}/_{10}$ s to compare $^{1}/_{2}$ and $^{3}/_{5}$, and equivalence with $^{1}/_{20}$ s to compare $^{7}/_{10}$ and $^{3}/_{4}$.

$$\frac{5}{10} < \frac{6}{10}$$
, so $\frac{1}{2} < \frac{3}{5}$
 $\frac{14}{20} < \frac{15}{20}$, so $\frac{7}{10} < \frac{3}{4}$

How can we compare $\frac{7}{5}$ and $\frac{5}{4}$?

Write the fractions as mixed numbers first, and then the fractional parts of each as $^{1}/_{20}$ s.

