Compare fractions with different denominators using equivalence.

Compare fractions with different denominators using equivalence.

But what if we don't have a fraction wall to help us compare fractions visually?

We can write these as the same 'sort' of fractions,
i.e. fractions with a common denominator, in this case ${ }^{1} / 15$, to compare them.

Have a go at writing both
$2 / 3$ and $3 / 5$ as $1 / 15$, then write > or < to compare them.

$$
\begin{gathered}
10 / 15>9 / 15 \\
\text { So, } 2 / 3>3 / 5
\end{gathered}
$$

$2 / 3=10 / 15$ (multiply both numerator and denominator by 5)

$$
3 / 5=9 / 15(\text { multiply both numerator and denominator by } 3)
$$

Compare fractions with different denominators using equivalence.

List which fractions with denominators less than 20 can be written as $1 / 20$.

$$
1 / 2^{S} \quad 1 / 4_{4} \quad 1 / 5^{S} 1 / 10^{S}
$$

Now use equivalence with $1 /{ }_{10} \mathrm{~S}$ to compare $1 / 2$ and $3 / 5$, and equivalence with $1 / 20$ s to compare $7 / 10$ and $3 / 4$.

$$
\begin{gathered}
5 / 10<6 / 10, \text { so } 1 / 2<3 / 5 \\
14 / 20<15 / 20, \text { so } 7 / 10<3 / 4
\end{gathered}
$$

How can we compare

$$
7 / 5 \text { and } 5 / 4 \text { ? }
$$

Write the fractions as mixed numbers first, and then the fractional parts of each as $1 / 20$.

