Year 6: Week 3, Day 4 Volume of cubes and cuboids

Each day covers one maths topic. It should take you about 1 hour or just a little more.

1. Start by reading through the Learning Reminders. They come from our PowerPoint slides.

2. Tackle the questions on the Practice Sheet. There might be a choice of either Mild (easier) or Hot (harder)!
Check the answers.

3. Finding it tricky? That's OK... have a go with a grown-up at A Bit Stuck?

4. Have I mastered the topic? A few questions to Check your understanding.
Fold the page to hide the answers!

Learning Reminders

Find volumes of cubes and cuboids.

We can use a formula to describe this efficiently:

 length \times width \times height, or $\mathrm{I} \times \mathbf{w} \times \mathrm{h}$ for shortWe measure volume in centimetres cubed (cm^{3}) or metres cubed (m^{3}) or millimetres cubed (mm^{3}) or even kilometres cubed ($\mathbf{k m}^{3}$).

The small ' 3 ' after cm , stands for cubed, or 3 dimensions.

Learning Reminders

Practice Sheet Mild
 Missing edges

Calculate the length of the missing edges of these cuboids.

Volume $8 \mathrm{~cm}^{3}$

Challenge

Draw two or more 'missing edge' cuboids. Ask a friend to calculate the missing lengths.

Practice Sheet Hot Finding volumes of cuboids

Challenge

Sketch your own cuboids with a volume of $36 \mathrm{~cm}^{3}$, note the dimensions of each.
© Hamilton Trust

Practice Sheet Hot Missing edges

Calculate the length of the missing edges of these cuboids.

Volume $48 \mathrm{~cm}^{3}$

Volume $48 \mathrm{~cm}^{3}$

Practice Sheet Answers

Finding volumes of cuboids (mild)
$10 \mathrm{~cm} \times 3 \mathrm{~cm} \times 4 \mathrm{~cm}=120 \mathrm{~cm}^{2}$
$6 \mathrm{~cm} \times 5 \mathrm{~cm} \times 3 \mathrm{~cm}=90 \mathrm{~cm}^{2}$
$4 \mathrm{~cm} \times 4 \mathrm{~cm} \times 3 \mathrm{~cm}=48 \mathrm{~cm}^{2}$
$8 \mathrm{~cm} \times 3 \mathrm{~cm} \times 5 \mathrm{~cm}=120 \mathrm{~cm}^{2}$
$6 \mathrm{~cm} \times 6 \mathrm{~cm} \times 6 \mathrm{~cm}=216 \mathrm{~cm}^{2}$
$7 \mathrm{~cm} \times 8 \mathrm{~cm} \times 4 \mathrm{~cm}=224 \mathrm{~cm}^{2}$

Challenge

Cuboids could have dimensions as follows:

$1 \times 1 \times 36 \mathrm{~cm}$	$2 \times 2 \times 9 \mathrm{~cm}$	$3 \times 3 \times 4 \mathrm{~cm}$
$1 \times 2 \times 18 \mathrm{~cm}$	$2 \times 3 \times 6 \mathrm{~cm}$	
$1 \times 3 \times 12 \mathrm{~cm}$		
$1 \times 4 \times 9 \mathrm{~cm}$		
$1 \times 6 \times 6 \mathrm{~cm}$		

Missing edges (mild)

Volume $8 \mathrm{~cm}^{2}$
Volume $30 \mathrm{~cm}^{2}$
Volume $30 \mathrm{~cm}^{2}$
Volume $27 \mathrm{~cm}^{2}$
Volume $36 \mathrm{~cm}^{2}$
Volume $80 \mathrm{~cm}^{2}$

Edges are: $2 \times 2 \times 2 \mathrm{~cm}$
Edges are: $2 \times 3 \times 5 \mathrm{~cm}$
Edges are: $5 \times 3 \times 2 \mathrm{~cm}$
Edges are: $3 \times 3 \times 3 \mathrm{~cm}$
Edges are: $2 \times 2 \times 9 \mathrm{~cm}$
Edges are: $4 \times 5 \times 4 \mathrm{~cm}$

Finding volumes of cuboids (hot)
$10 \mathrm{~cm} \times 3 \mathrm{~cm} \times 4 \mathrm{~cm}=120 \mathrm{~cm}^{2}$
$6 \mathrm{~cm} \times 5 \mathrm{~cm} \times 3 \mathrm{~cm}=90 \mathrm{~cm}^{2}$
$4 \mathrm{~cm} \times 4 \mathrm{~cm} \times 3 \mathrm{~cm}=48 \mathrm{~cm}^{2}$
$8 \mathrm{~cm} \times 3 \mathrm{~cm} \times 5 \mathrm{~cm}=120 \mathrm{~cm}^{2}$
$6 \mathrm{~cm} \times 6 \mathrm{~cm} \times 6 \mathrm{~cm}=216 \mathrm{~cm}^{2}$
$7 \mathrm{~cm} \times 8 \mathrm{~cm} \times 4 \mathrm{~cm}=224 \mathrm{~cm}^{2}$

Challenge

Cuboids could have dimensions as follows:

$1 \times 1 \times 36 \mathrm{~cm}$	$2 \times 2 \times 9 \mathrm{~cm}$	$3 \times 3 \times 4 \mathrm{~cm}$
$1 \times 2 \times 18 \mathrm{~cm}$	$2 \times 3 \times 6 \mathrm{~cm}$	
$1 \times 3 \times 12 \mathrm{~cm}$		
$1 \times 4 \times 9 \mathrm{~cm}$		
$1 \times 6 \times 6 \mathrm{~cm}$		

Missing edges Jhot)

Volume $60 \mathrm{~cm}^{2}$
Volume $120 \mathrm{~cm}^{2}$
Volume $48 \mathrm{~cm}^{2}$
Volume $30 \mathrm{~cm}^{2}$
Volume $64 \mathrm{~cm}^{2}$
Volume $48 \mathrm{~cm}^{2}$
Volume $45 \mathrm{~cm}^{2}$

Edges are: $4 \times 5 \times 3 \mathrm{~cm}$
Edges are: $4 \times 5 \times 6 \mathrm{~cm}$
Edges are: $3 \times 4 \times 4 \mathrm{~cm}$
Edges are: $2 \times 3 \times 5 \mathrm{~cm}$
Edges are: $4 \times 4 \times 4 \mathrm{~cm}$
Edges are: $2 \times 4 \times 6 \mathrm{~cm}$
Edges are: $3 \times 5 \times 3 \mathrm{~cm}$

A Bit Stuck? Hidden volumes

Work in pairs, but record your work on your own paper/in your own book.
Things you will need:

- A pencil

What to do:

- Draw a cuboid made out of centimetre cubes. Label its dimensions.
- Find the number of cubes in one layer.
- Multiply the number of cubes in one layer by the number of layers to find the total number of cubes in the cuboid.
- Write the volume by the side.
- Repeat at least three more times.

S-t-r-e-t-c-h:

Work out the volume of this cuboid:

Learning outcomes:

- I can find the volume of cubes built from cm^{3} cubes.
- I am beginning to calculate the volume of cuboids.

Check your understanding

Questions

A $6 \mathrm{~cm} \times 6 \mathrm{~cm} \times 6 \mathrm{~cm}$ cube is chopped in half three times.
Find the volume of each cuboid after each of the three cuts and write the lengths of their edges.

(i) $1^{\text {st }} \mathrm{cut}$

(ii) $\quad 2^{\text {nd }}$ cut

(iii) $3^{\text {rd }}$ cut

Check your understanding

Answers

	number of cuboids	dimensions (cm)	volume of each $\left(\mathrm{cm}^{3}\right)$
after $\mathbf{1}^{\text {st }}$ cut	2	$6 \times 6 \times 3$	108
after $2^{\text {nd }}$ cut	4	$6 \times 3 \times 3$	54
${\text { after } 3^{\text {rd }} \text { cut }}$	8	$3 \times 3 \times 3$	27

