Year 6: Week 3, Day 1

Calculating area

Each day covers one maths topic. It should take you about 1 hour or just a little more.

1. If possible, watch the PowerPoint presentation with a teacher or another grown-up.

OR start by reading through the Learning Reminders. They come from our PowerPoint slides.

2. Tackle the questions on the Practice Sheet. There might be a choice of either Mild (easier) or Hot (harder)!
Check the answers.

3. Finding it tricky? That's OK... have a go with a grown-up at A Bit Stuck?

4. Have I mastered the topic? A few questions to Check your understanding.
Fold the page to hide the answers!

Learning Reminders

Find the area of triangles.

How can we find the area of this triangle?

We can use the fact that this triangle has $1 / 2$ the area of a 4 by 8 rectangle.

What is the area of this rectangle?
So, what is the triangle's area?

The area of the rectangle is 32 square units (8×4). The area of the triangle is 16 square units (half of 8×4).

Learning Reminders

Learning Reminders

Find the area of parallelograms.

Practice Sheet Mild Area of triangles

Find the area of each of these shapes. You may find it useful to annotate them.

Challenge

Now create your own compound shapes with an area of $40 \mathrm{~cm}^{2}$.

Practice Sheet Mild Area of triangles

Find the area of each of these shapes. You may find it useful to annotate some of them.

Challenge

Now create your own compound shapes with an area of $44 \mathrm{~cm}^{2}$

Practice Sheet Hot
 Area of triangles

Find the area of each of these shapes. You may find it useful to annotate some of them.

Challenge

Now create your own compound shapes with an area of $44 \mathrm{~cm}^{2}$

© Hamilton Trust

Practice Sheet Hot Area of parallelograms

Write the area of each parallelogram inside the shape.

Challenge

In the space available, draw a parallelogram with an area of $18 \mathrm{~cm}^{2}$.

Practice Sheets Answers

Area of triangles (mild)

Triangles with height and base lengths of:
4 cm and 3 cm , area $=6 \mathrm{~cm}^{2}$
2 cm and 6 cm , area $=6 \mathrm{~cm}^{2}$
5 cm and 3 cm . area $=7.5 \mathrm{~cm}^{2}$
4 cm and 6 cm , area $=12 \mathrm{~cm}^{2}$
Parallelogram area (straight sides 5 and 11 cm) $=32 \mathrm{~cm}^{2}$
Area of triangles (mild)
Triangles with height and base lengths of:
4 cm and 3 cm , area $=6 \mathrm{~cm}^{2}$
2 cm and 6 cm , area $=6 \mathrm{~cm}^{2}$
5 cm and 3 cm . area $=7.5 \mathrm{~cm}^{2}$
4 cm and 6 cm , area $=12 \mathrm{~cm}^{2}$
Isoceles trapezium area (straight sides 5 and 11 cm) $=32 \mathrm{~cm}^{2}$
Pentagon $=49.5 \mathrm{~cm}^{2}$
Trapezium area (straight sides 5 and 9 cm) $=14 \mathrm{~cm}^{2}$

Area of triangles (hot)
Triangles with height and base lengths of:
4 cm and 3 cm , area $=6 \mathrm{~cm}^{2}$
2 cm and 6 cm , area $=6 \mathrm{~cm}^{2}$
5 cm and 3 cm . area $=7.5 \mathrm{~cm}^{2}$
4 cm and 6 cm , area $=12 \mathrm{~cm}^{2}$
Isoceles trapezium area (straight sides 5 and 11 cm) $=32 \mathrm{~cm}^{2}$
Pentagon $=49.5 \mathrm{~cm}^{2}$
Trapezium area (straight sides 5 and 9 cm) $=14 \mathrm{~cm}^{2}$

Area of parallelograms (hot)
Areas are:

$20 \mathrm{~cm}^{2}$	$16 \mathrm{~cm}^{2}$	$15 \mathrm{~cm}^{2}$
$14 \mathrm{~cm}^{2}$	$12 \mathrm{~cm}^{2}$	
$24 \mathrm{~cm}^{2}$		

Work in pairs, but record your work on your own paper/in your own book.

Things you will need:

- cm ${ }^{2}$ paper
- Scissors
- A glue stick

- A pencil

A Bit Stuck? Folding areas

What to do:

- Draw a rectangle on cm^{2} paper.

One or both sides should measure an even number of centimetres.

- Work out the area.
- Fold it diagonally in half to form a pair of triangles. Calculate the area of each triangle.
- Unfold the rectangle and stick it on paper/in your book. Write the area of the rectangle and triangle.
- Repeat with at least 5 different rectangles.

S-t-r-e-t-c-h:

Draw a right-angled triangle. Draw the other half of the rectangle. Write the area of both the rectangle and the triangle.

Learning outcomes:

- I can find the area of rectangles and halve to find the area of right-angled triangles.
- I am beginning to draw rectangles around right-angled triangles in order to find the area of the triangle.

-								
-								
-								

© Hamilton Trust

Check your understanding Questions

Find the area of this triangle.

What is the area of this shape?

Base of triangle is half length of rectangle.
Triangle has two equal sides.

Fold here to hide answers

Check your understanding
 \section*{Answers}

Find the area of this triangle.

Perpendicular height $=6 \mathrm{~cm}$
$15 \mathrm{~cm}^{2}$. Watch out for the error of multiplying the height and base but neglecting to find half of that (resulting in area $=30 \mathrm{~cm}^{2}$).

What is the area of this shape? $40 \mathrm{~cm}^{2}$

$$
\text { Total length }=12 \mathrm{~cm}
$$

Base of triangle is half length of rectangle.
Triangle has two equal sides.
The length of rectangle and triangle must be 8 cm and 4 cm respectively.
The height must also be 4 cm as the triangle has two equal sides (the third slanted side will be the longer of the 3 sides).
Area of the rectangle is $8 \times 4=32 \mathrm{~cm}^{2}$. Area of the triangle is $1 / 2 \times 4 \times 4=8 \mathrm{~cm}^{2}$.

